
Paramètres
En savoir plus sur le livre
Inhaltsverzeichnis1. Einführung.2. Bezeichnungen der Mengenlehre und Algebra.3. Grundbegriffe der linearen Algebra.3.1. Vektorräume.3.2. Der algebraische Dualraum oder Kovektorraum.3.3. Der Dualraum der direkten Summe von Vektorräumen.3.4. Das Identifizieren von Vektorräumen.3.5. Symmetrische Vektorräume.3.6. Hermitesche Vektorräume.4. Grundbegriffe der multilinearen Algebra.4.1. Tensoren.4.2. Tensoren höherer Stufenzahl.4.3. Symmetrische und antisymmetrische Tensoren.4.4. Tensorprodukte von linearen Abbildungen.4.5. Volumenfunktionen und alternierende Multilinearformen.4.6. Ergänzungen und Graßmannsche Ergänzungen.5. Differenzierbare Mannigfaltigkeiten.5.1. Differenzierbare Mannigfaltigkeiten der Physik.5.2. Tangentiale Vektorbündel und Vektorfelder.5.3. Tangentiale Kovektorbündel und allgemeine Vektorfelder.5.4. Symmetrische und n-symmetrische Mannigfaltigkeiten.5.5. Integranden für Integrale der Mannigfaltigkeiten.5.6. Die alternierende Ableitung von p-Kovektorfeldern und der Satz von Poincaré.5.7. Gaußsche Integralformeln.5.8. Affin zusammenhängende Mannigfaltigkeiten und das Lemma von Ricci.Literatur.Sachwortverzeichnis.
Achat du livre
Vektor- und Tensorrechnung für die Physik, Gerhard Gerlich
- Langue
- Année de publication
- 1977
Modes de paiement
Personne n'a encore évalué .