Le livre est actuellement en rupture de stock

En savoir plus sur le livre
Kurt Gödel's groundbreaking work in 1931 revealed profound limitations in formal mathematical systems, particularly through his first incompleteness theorem. He demonstrated that in any sufficiently complex system containing elementary arithmetic, there exist true statements that cannot be proven within that system. This challenged the notion that all mathematical truths could be derived from a finite set of rules. Gödel's insights not only transformed mathematics but also raised critical questions about the consistency and completeness of mathematical proofs, leading to further exploration in the field.
Achat du livre
Can Mathematics Be Proved Consistent?, Jan von Plato
- Langue
- Année de publication
- 2021
- product-detail.submit-box.info.binding
- (souple)
Nous vous informerons par e-mail dès que nous l’aurons retrouvé.
Modes de paiement
Personne n'a encore évalué .
