Bookbot

On Kolmogorov's Superposition Theorem and its Applications

A Nonlinear Model for Numerical Function Reconstruction from Discrete Data Sets in Higher Dimensions

Paramètres

Pages
192pages
Temps de lecture
7heures

En savoir plus sur le livre

The book introduces a Regularization Network approach utilizing Kolmogorov's superposition theorem to reconstruct higher-dimensional continuous functions from discrete data points. It presents a new constructive proof of the theorem and explores its various versions, linking them to well-known approximation methods and Neural Networks. The work addresses the challenge of the curse of dimensionality, proposing a nonlinear model for function reconstruction within a reproducing kernel Hilbert space. It includes verification and analysis through numerous numerical examples.

Achat du livre

On Kolmogorov's Superposition Theorem and its Applications, Jürgen Braun

Langue
Année de publication
2010
product-detail.submit-box.info.binding
(souple)
Nous vous informerons par e-mail dès que nous l’aurons retrouvé.

Modes de paiement

Personne n'a encore évalué .Évaluer