Acheter 10 livres pour 10 € ici !
Bookbot

Statistical Optimization for Geometric Computation

Évaluation du livre

3,0(1)Évaluer

Paramètres

  • 528pages
  • 19 heures de lecture

En savoir plus sur le livre

This text for graduate students discusses the mathematical foundations of statistical inference for building three-dimensional models from image and sensor data that contain noise--a task involving autonomous robots guided by video cameras and sensors.The text employs a theoretical accuracy for the optimization procedure, which maximizes the reliability of estimations based on noise data. The numerous mathematical prerequisites for developing the theories are explained systematically in separate chapters. These methods range from linear algebra, optimization, and geometry to a detailed statistical theory of geometric patterns, fitting estimates, and model selection. In addition, examples drawn from both synthetic and real data demonstrate the insufficiencies of conventional procedures and the improvements in accuracy that result from the use of optimal methods.

Achat du livre

Statistical Optimization for Geometric Computation, Kenichi Kanatani

Langue
Année de publication
2005
product-detail.submit-box.info.binding
(souple)
Nous vous informerons par e-mail dès que nous l’aurons retrouvé.

Modes de paiement

3,0
Très bien !
1 Évaluations

Il manque plus que ton avis ici.