Bookbot

Stochastic Optimization Methods

Auteurs

Paramètres

Pages
340pages
Temps de lecture
12heures

En savoir plus sur le livre

Optimization problems arising in practice involve random model parameters. For the computation of robust optimal solutions, i. e., optimal solutions being insenistive with respect to random parameter variations, appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data, and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems. Due to the occurring probabilities and expectations, approximative solution techniques must be applied. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures, differentiation formulas for probabilities and expectations.

Achat du livre

Stochastic Optimization Methods, Kurt Marti

Langue
Année de publication
2008
Nous vous informerons par e-mail dès que nous l’aurons retrouvé.

Modes de paiement

Personne n'a encore évalué .Évaluer