Acheter 10 livres pour 10 € ici !
Bookbot

Borcherds products on 0(2,l) and Chern classes of Heegner divisors

Évaluation du livre

5,0(1)Évaluer

Paramètres

En savoir plus sur le livre

Around 1994 R. Borcherds discovered a new type of meromorphic modular form on the orthogonal group $O(2, n)$. These „Borcherds products“ have infinite product expansions analogous to the Dedekind eta-function. They arise as multiplicative liftings of elliptic modular forms on $(SL)_2(R)$. The fact that the zeros and poles of Borcherds products are explicitly given in terms of Heegner divisors makes them interesting for geometric and arithmetic applications. In the present text the Borcherds' construction is extended to Maass wave forms and is used to study the Chern classes of Heegner divisors. A converse theorem for the lifting is proved.

Achat du livre

Borcherds products on 0(2,l) and Chern classes of Heegner divisors, Jan Hendrik Bruinier

Langue
Année de publication
2002
Nous vous informerons par e-mail dès que nous l’aurons retrouvé.

Modes de paiement

5,0
Excellent
1 Évaluations

Il manque plus que ton avis ici.