Plus d’un million de livres à portée de main !
Bookbot

Bernhard Schölkopf

    Bernhard Schölkopf est une figure de proue dans le domaine de l'apprentissage automatique, réputé pour ses travaux fondateurs sur les méthodes à noyau et les classificateurs à grande marge. Ses recherches explorent les aspects théoriques et les applications pratiques de l'intelligence artificielle, en étudiant comment les machines peuvent apprendre des données de manière efficace et fiable. Par ses publications significatives et son leadership académique, il a profondément influencé la trajectoire de l'IA contemporaine, rendant des concepts sophistiqués compréhensibles à un large public scientifique.

    Support vector learning
    Learning theory and kernel machines
    Empirical inference
    • Empirical inference

      • 287pages
      • 11 heures de lecture

      This book honours the outstanding contributions of Vladimir Vapnik, a rare example of a scientist for whom the following statements hold true simultaneously: his work led to the inception of a new field of research, the theory of statistical learning and empirical inference; he has lived to see the field blossom; and he is still as active as ever

      Empirical inference
    • Learning theory and kernel machines

      • 746pages
      • 27 heures de lecture

      This book constitutes the joint refereed proceedings of the 16th Annual Conference on Computational Learning Theory, COLT 2003, and the 7th Kernel Workshop, Kernel 2003, held in Washington, DC in August 2003. The 47 revised full papers presented together with 5 invited contributions and 8 open problem statements were carefully reviewed and selected from 92 submissions. The papers are organized in topical sections on kernel machines, statistical learning theory, online learning, other approaches, and inductive inference learning.

      Learning theory and kernel machines