Plus d’un million de livres à portée de main !
Bookbot

Eberhard Zeidler

    6 octobre 1940 – 18 novembre 2016
    Quantum Field Theory I: Basics in Mathematics and Physics
    Applied Functional Analysis
    Nonlinear Functional Analysis and its Applications
    Quantum field theory 3
    Quantum field theory 2
    Quantum field theory
    • Quantum field theory

      • 1020pages
      • 36 heures de lecture
      4,5(7)Évaluer

      This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists, at levels ranging from advanced undergraduate students to professional scientists. The book bridges the acknowledged gap between the different languages used by mathematicians and physicists. For students of mathematics the author shows that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which goes beyond the usual curriculum in physics.

      Quantum field theory
    • And God said, Let there be light; and there was light. Genesis 1,3 Light is not only the basis of our biological existence, but also an essential source of our knowledge about the physical laws of nature, ranging from the seventeenth century geometrical optics up to the twentieth century theory of general relativity and quantum electrodynamics. Folklore Don’t give us numbers: give us insight! A contemporary natural scientist to a mathematician The present book is the second volume of a comprehensive introduction to themathematicalandphysicalaspectsofmodernquantum? eldtheorywhich comprehends the following six volumes: Volume I: Basics in Mathematics and Physics Volume II: Quantum Electrodynamics Volume III: Gauge Theory Volume IV: Quantum Mathematics Volume V: The Physics of the Standard Model Volume VI: Quantum Gravitation and String Theory. It is our goal to build a bridge between mathematicians and physicists based on the challenging question about the fundamental forces in • macrocosmos (the universe) and • microcosmos (the world of elementary particles). The six volumes address a broad audience of readers, including both und- graduate and graduate students, as well as experienced scientists who want to become familiar with quantum ? eld theory, which is a fascinating topic in modern mathematics and physics.

      Quantum field theory 2
    • In this third volume of his modern introduction to quantum field theory, Eberhard Zeidler examines the mathematical and physical aspects of gauge theory as a principle tool for describing the four fundamental forces which act in the universe: gravitative, electromagnetic, weak interaction and strong interaction. Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure. The book is arranged in four sections, devoted to realizing the universal principle force equals curvature: Part I: The Euclidean Manifold as a ParadigmPart II: Ariadne's Thread in Gauge TheoryPart III: Einstein's Theory of Special RelativityPart IV: Ariadne's Thread in Cohomology For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum. Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos).

      Quantum field theory 3
    • Nonlinear Functional Analysis and its Applications

      I: Fixed-Point Theorems

      • 936pages
      • 33 heures de lecture

      Exploring the intersection of mathematics and various scientific fields, this book delves into nonlinear problems that arise in physics, chemistry, biology, and economics. It highlights real-world applications, such as the deformation of materials, fluid dynamics, and the behavior of complex systems. The text emphasizes the importance of insight over mere numerical analysis, echoing the sentiments of historical figures like Archimedes and Einstein. By addressing a wide range of phenomena, it aims to enhance understanding of stability, self-organization, and the intricate laws governing natural processes.

      Nonlinear Functional Analysis and its Applications
    • Applied Functional Analysis

      • 428pages
      • 15 heures de lecture

      This book presents functional analysis through an application-oriented approach, focusing on real-world problems relevant to mathematics, physics, and engineering. Aimed at undergraduate and beginning graduate students, it emphasizes practical applications over theoretical perfection, divided into two parts: applications to mathematical physics and main principles.

      Applied Functional Analysis
    • Quantum Field Theory I: Basics in Mathematics and Physics

      A Bridge between Mathematicians and Physicists

      • 1052pages
      • 37 heures de lecture

      This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists, at levels ranging from advanced undergraduate students to professional scientists. The book bridges the acknowledged gap between the different languages used by mathematicians and physicists. For students of mathematics the author shows that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which goes beyond the usual curriculum in physics.

      Quantum Field Theory I: Basics in Mathematics and Physics
    • Quantum Field Theory II: Quantum Electrodynamics

      A Bridge between Mathematicians and Physicists

      • 1101pages
      • 39 heures de lecture

      And God said, Let there be light; and there was light. Genesis 1,3 Light is not only the basis of our biological existence, but also an essential source of our knowledge about the physical laws of nature, ranging from the seventeenth century geometrical optics up to the twentieth century theory of general relativity and quantum electrodynamics. Folklore Don’t give us numbers: give us insight! A contemporary natural scientist to a mathematician The present book is the second volume of a comprehensive introduction to themathematicalandphysicalaspectsofmodernquantum? eldtheorywhich comprehends the following six volumes: Volume I: Basics in Mathematics and Physics Volume II: Quantum Electrodynamics Volume III: Gauge Theory Volume IV: Quantum Mathematics Volume V: The Physics of the Standard Model Volume VI: Quantum Gravitation and String Theory. It is our goal to build a bridge between mathematicians and physicists based on the challenging question about the fundamental forces in • macrocosmos (the universe) and • microcosmos (the world of elementary particles). The six volumes address a broad audience of readers, including both und- graduate and graduate students, as well as experienced scientists who want to become familiar with quantum ? eld theory, which is a fascinating topic in modern mathematics and physics.

      Quantum Field Theory II: Quantum Electrodynamics
    • Quantum Field Theory III: Gauge Theory

      A Bridge between Mathematicians and Physicists

      In this third volume of his modern introduction to quantum field theory, Eberhard Zeidler examines the mathematical and physical aspects of gauge theory as a principle tool for describing the four fundamental forces which act in the universe: gravitative, electromagnetic, weak interaction and strong interaction. Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure. The book is arranged in four sections, devoted to realizing the universal principle force equals curvature: Part I: The Euclidean Manifold as a ParadigmPart II: Ariadne's Thread in Gauge TheoryPart III: Einstein's Theory of Special RelativityPart IV: Ariadne's Thread in Cohomology For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum. Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos).

      Quantum Field Theory III: Gauge Theory
    • The Oxford Users' Guide to Mathematics is one of the leading handbooks on mathematics available. It presents a comprehensive modern picture of mathematics and emphasises the relations between the different branches of mathematics, and the applications of mathematics in engineering and the natural sciences. The Oxford User's Guide covers a broad spectrum of mathematics starting with the basic material and progressing on to more advanced topics that have come to the fore in the last few decades. The book is organised into mathematical sub-disciplines including analysis, algebra, geometry, foundations of mathematics, calculus of variations and optimisation, theory of probability and mathematical statistics, numerical mathematics and scientific computing, and history of mathematics. The book is supplemented by numerous tables on infinite series, special functions, integrals, integral transformations, mathematical statistics, and fundamental constants in physics. It also includes a comprehensive bibliography of key contemporary literature as well as an extensive glossary and index. The wealth of material, reaching across all levels and numerous sub-disciplines, makes The Oxford User's Guide to Mathematics an invaluable reference source for students of engineering, mathematics, computer science, and the natural sciences, as well as teachers, practitioners, and researchers in industry and academia.

      Oxford user's guide to mathematics
    • Applied functional analysis 1

      • 481pages
      • 17 heures de lecture
      4,0(2)Évaluer

      The first part of a self-contained, elementary textbook, combining linear functional analysis, nonlinear functional analysis, numerical functional analysis, and their substantial applications with each other. As such, the book addresses undergraduate students and beginning graduate students of mathematics, physics, and engineering who want to learn how functional analysis elegantly solves mathematical problems which relate to our real world. Applications concern ordinary and partial differential equations, the method of finite elements, integral equations, special functions, both the Schroedinger approach and the Feynman approach to quantum physics, and quantum statistics. As a prerequisite, readers should be familiar with some basic facts of calculus. The second part has been published under the title, Applied Functional Analysis: Main Principles and Their Applications.

      Applied functional analysis 1