Forecasts are useless whenever the forecast error variance fails to be smaller than the unconditional variance of the target variable. This paper develops tests for the null hypothesis that forecasts become uninformative beyond some limiting forecast horizon h. Following Diebold and Mariano (DM, 1995) we propose a test based on the comparison of the mean-squared error of the forecast and the sample variance. We show that the resulting test does not possess a limiting normal distribution and suggest two simple modifications of the DM-type test with different limiting null distributions. Furthermore, a forecast encompassing test is developed that tends to better control the size of the test. In our empirical analysis, we apply our tests to macroeconomic forecasts from the survey of Consensus Economics. Our results suggest that forecasts of macroeconomic key variables are barely informative beyond 2–4 quarters ahead.
Jörg Breitung Livres






This paper compares alternative estimation procedures for multi-level factor models which imply blocks of zero restrictions on the associated matrix of factor loadings. We suggest a sequential least squares algorithm for minimizing the total sum of squared residuals and a two-step approach based on canonical correlations that are much simpler and faster than Bayesian approaches previously employed in the literature. Monte Carlo simulations suggest that the estimators perform well in typical sample sizes encountered in the factor analysis of macroeconomic data sets. We apply the methodologies to study international comovements of business and financial cycles as well as asymmetries over the business cycle in the US.
From time to time, economies undergo far-reaching structural changes. In this paper we investigate the consequences of structural breaks in the factor loadings for the specification and estimation of factor models based on principal components and suggest test procedures for structural breaks. It is shown that structural breaks severely inflate the number of factors identified by the usual information criteria. Based on the strict factor model the hypothesis of a structural break is tested by using Likelihood-Ratio, Lagrange-Multiplier and Wald statistics. The LM test which is shown to perform best in our Monte Carlo simulations, is generalized to factor models where the common factors and idiosyncratic components are serially correlated. We also apply the suggested test procedure to a US dataset used in Stock and Watson (2005) and a euro-area dataset described in Altissimo et al. (2007). We find evidence that the beginning of the so-called Great Moderation in the US as well as the Maastricht treaty and the handover of monetary policy from the European national central banks to the ECB coincide with structural breaks in the factor loadings. Ignoring these breaks may yield misleading results if the empirical analysis focuses on the interpretation of common factors or on the transmission of common shocks to the variables of interest. -- Dynamic factor models ; structural breaks ; number of factors ; Great Moderation ; EMU
This paper provides a review of the literature on unit roots and cointegration in panels where the time dimension (T), and the cross section dimension (N) are relatively large. It distinguishes between the first generation tests developed on the assumption of the cross section independence, and the second generation tests that allow, in a variety of forms and degrees, the dependence that might prevail across the different units in the panel. In the analysis of cointegration the hypothesis testing and estimation problems are further complicated by the possibility of cross section cointegration which could arise if the unit roots in the different cross section units are due to common random walk components
Factor models can cope with many variables without running into scarce degrees of freedom problems often faced in a regression-based analysis. In this article we review recent work on dynamic factor models that have become popular in macroeconomic policy analysis and forecasting. By means of an empirical application we demonstrate that these models turn out to be useful in investigating macroeconomic problems