Plus d’un million de livres à portée de main !
Bookbot

Jürgen Neukirch

    24 juillet 1937 – 5 février 1997
    Klassenkörpertheorie
    Cohomology of number fields
    Class field theory
    Algebraic number theory
    • From the review: „The present book has as its aim to resolve a discrepancy in the textbook literature and ... to provide a comprehensive introduction to algebraic number theory which is largely based on the modern, unifying conception of (one-dimensional) arithmetic algebraic geometry. ... Despite this exacting program, the book remains an introduction to algebraic number theory for the beginner... The author discusses the classical concepts from the viewpoint of Arakelov theory.... The treatment of class field theory is ... particularly rich in illustrating complements, hints for further study, and concrete examples.... The concluding chapter VII on zeta-functions and L-series is another outstanding advantage of the present textbook.... The book is, without any doubt, the most up-to-date, systematic, and theoretically comprehensive textbook on algebraic number field theory available.“ W. Kleinert in: Zentralblatt für Mathematik , 1992

      Algebraic number theory
    • Class field theory

      • 195pages
      • 7 heures de lecture
      5,0(1)Évaluer

      The present manuscript is an improved edition of a text that first appeared under the same title in Bonner Mathematische Schriften, no.26, and originated from a series of lectures given by the author in 1965/66 in Wolfgang Krull's seminar in Bonn. Its main goal is to provide the reader, acquainted with the basics of algebraic number theory, a quick and immediate access to class field theory. This script consists of three parts, the first of which discusses the cohomology of finite groups. The second part discusses local class field theory, and the third part concerns the class field theory of finite algebraic number fields.

      Class field theory
    • Cohomology of number fields

      • 714pages
      • 25 heures de lecture

      Galois modules over local and global fields form the main subject of this monograph, which can serve both as a textbook for students, and as a reference book for the working mathematician, on cohomological topics in number theory. The first part provides the necessary algebraic background. The arithmetic part deals with Galois groups of local and global local Tate duality, the structure of the absolute Galois group of a local field, extensions of global fields with restricted ramification, cohomology of the idèle and the idèle class groups, Poitou-Tate duality for finitely generated Galois modules, the Hasse principle, the theorem of Grunwald-Wang, Leopoldt's conjecture, Riemann's existence theorem for number fields, embedding problems, the theorems of Iwasawa and of Safarevic on solvable groups as Galois groups over global fields, Iwasawa theory of local and global number fields, and the characterization of number fields by their absolute Galois groups.

      Cohomology of number fields
    • Klassenkörpertheorie

      Neu herausgegeben von Alexander Schmidt

      • 204pages
      • 8 heures de lecture

      Der Klassiker zum Thema bietet Lesern, die mit den Grundlagen der algebraischen Zahlentheorie vertraut sind, einen raschen Zugang zur Klassenkörpertheorie. Die Neuauflage ist eine verbesserte Version des 1969 in der Reihe B. I.-Hochschulskripten (Bibliographisches Institut Mannheim) erschienenen gleichnamigen Bandes. Das Werk besteht aus drei Teilen: Im ersten wird die Kohomologie der endlichen Gruppen behandelt, im zweiten die lokale Klassenkörpertheorie, der dritte Teil widmet sich der Klassenkörpertheorie der endlichen algebraischen Zahlkörper.

      Klassenkörpertheorie