Plus d’un million de livres disponibles en un clic !
Bookbot

Wolfgang Arendt

    Das menschliche Skelettsystem
    Vector valued Laplace transforms and Cauchy problems
    Nonlinear evolution equations and related topics
    Vector-valued Laplace Transforms and Cauchy Problems. Second Edition
    Partial Differential Equations
    Mathematical analysis of evolution, information, and complexity
    • Mathematical Analysis of Evolution, Information, and Complexity deals with the analysis of evolution, information and complexity. The time evolution of systems or processes is a central question in science, this text covers a broad range of problems including diffusion processes, neuronal networks, quantum theory and cosmology. Bringing together a wide collection of research in mathematics, information theory, physics and other scientific and technical areas, this new title offers elementary and thus easily accessible introductions to the various fields of research addressed in the book.

      Mathematical analysis of evolution, information, and complexity
    • Partial Differential Equations

      An Introduction to Analytical and Numerical Methods

      • 476pages
      • 17 heures de lecture

      The textbook offers a comprehensive introduction to partial differential equations through a blend of analytical and numerical methods. By combining these complementary approaches, it establishes a solid foundation for advanced study. The inclusion of motivating examples from physical sciences, engineering, and economics enriches the learning experience, making complex concepts more accessible and relevant.

      Partial Differential Equations
    • This monograph systematically explores vector-valued Laplace transforms, covering representation theory, Tauberian theorems, and linear Cauchy problems. It examines existence, uniqueness, regularity, approximation, and asymptotic behavior of solutions, with applications to partial differential equations. The second edition includes updates on recent developments and corrected errors.

      Vector-valued Laplace Transforms and Cauchy Problems. Second Edition
    • Philippe Bénilan was a most original and charismatic mathematician who had a deep and decisive impact on the theory of nonlinear evolution equations. The present volume is dedicated to him and contains research papers written by highly distinguished mathematicians. They are all related to Bénilan's work and reflect the present state of this most active field. The contributions cover a wide range of nonlinear and linear equations. Special topics are Hamilton-Jacobi equations, the porous medium equation, reaction diffusion systems, integro-differential equations and visco-elasticity, maximal regularity for elliptic and parabolic equations, and the Ornstein-Uhlenbeck operator. Also in this volume, the legendary work of Bénilan-Brézis on Thomas-Fermi theory is published for the first time.

      Nonlinear evolution equations and related topics
    • This monograph gives a systematic account of the theory of vector-valued Laplace transforms, ranging from representation theory to Tauberian theorems. In parallel, the theory of linear Cauchy problems and semigroups of operators is developed completely in the spirit of Laplace transforms. Existence and uniqueness, regularity, approximation and above all asymptotic behaviour of solutions are studied. Diverse applications to partial differential equations are given. The book contains an introduction to the Bochner integral and several appendices on background material. It is addressed to students and researchers interested in evolution equations, Laplace and Fourier transforms, and functional analysis.

      Vector valued Laplace transforms and Cauchy problems
    • Partielle Differenzialgleichungen

      • 358pages
      • 13 heures de lecture

      Dieses Lehrbuch gibt eine Einführung in die partiellen Differenzialgleichungen. Wir beginnen mit einigen ganz konkreten Beispielen aus den Natur- Ingenieur und Wirtschaftswissenschaften. Danach werden elementare Lösungsmethoden dargestellt, z. B. für die Black-Scholes-Gleichung aus der Finanzmathematik. Schließlich wird die analytische Untersuchung großer Klassen von partiellen Differenzialgleichungen dargestellt, wobei Hilbert-Raum-Methoden im Mittelpunkt stehen. Numerische Verfahren werden eingeführt und mit konkreten Beispielen behandelt. Zu jedem Kapitel finden sich Übungsaufgaben, mit deren Hilfe der Stoff eingeübt und vertieft werden kann. Dieses Buch richtet sich an Studierende im Bachelor oder im ersten Master-Jahr sowohl in der (Wirtschafts-)Mathematik als auch in den Studiengängen Informatik, Physik und Ingenieurwissenschaften.

      Partielle Differenzialgleichungen