InhaltsverzeichnisBackground.Elliptic genera.A universal addition theorem for genera.Multiplicativity in fibre bundles.The Atiyah-Singer index theorem.Twisted operators and genera.Riemann-Roch and elliptic genera in the complex case.A divisibility theorem for elliptic genera.
Friedrich Hirzebruch Livres





Gesammelte Abhandlungen
- 814pages
- 29 heures de lecture
Friedrich Hirzebruch (1927 –2012) was a German mathematician, working in the fields of topology, complex manifolds and algebraic geometry, and a leading figure of his generation. Hirzebruch’s first great mathematical achievement was the proof, in 1954, of the generalization of the classical Riemann-Roch theorem to higher dimensional complex manifolds, now known as the Hirzebruch-Riemann-Roch theorem. This used the new techniques of sheaf cohomology and was one of the centerpieces of the explosion of new results in geometry and topology during the 1950s. Further generalization of this led to the Grothendieck-Riemann-Roch theorem, and the Atiyah-Singer index theorem. He received many awards and honors, including the Wolf prize in 1988, the Lobachevsky prize in 1990, and fifteen honorary doctorates. These two volumes collect the majority of his research papers, which cover a variety of topics.
In recent years new topological methods, especially the theory of sheaves founded by J. LERAY, have been applied successfully to algebraic geometry and to the theory of functions of several complex variables. H. CARTAN and J. -P. SERRE have shown how fundamental theorems on holomorphically complete manifolds (STEIN manifolds) can be for mulated in terms of sheaf theory. These theorems imply many facts of function theory because the domains of holomorphy are holomorphically complete. They can also be applied to algebraic geometry because the complement of a hyperplane section of an algebraic manifold is holo morphically complete. J. -P. SERRE has obtained important results on algebraic manifolds by these and other methods. Recently many of his results have been proved for algebraic varieties defined over a field of arbitrary characteristic. K. KODAIRA and D. C. SPENCER have also applied sheaf theory to algebraic geometry with great success. Their methods differ from those of SERRE in that they use techniques from differential geometry (harmonic integrals etc. ) but do not make any use of the theory of STEIN manifolds. M. F. ATIYAH and W. V. D. HODGE have dealt successfully with problems on integrals of the second kind on algebraic manifolds with the help of sheaf theory. I was able to work together with K. KODAIRA and D. C. SPENCER during a stay at the Institute for Advanced Study at Princeton from 1952 to 1954.
Einführung in die Funktionalanalysis
- 170pages
- 6 heures de lecture