Focusing on visualization's role in business intelligence and data science, this book guides readers in creating interactive dashboards using statistics and data mining. It aims to enhance decision-making speed and quality for those already familiar with Tableau software, helping them evolve into visualization experts. Through practical insights, it empowers users to effectively leverage data for impactful visual storytelling.
Subhashini Chellappan Livres



MongoDB Recipes
- 247pages
- 9 heures de lecture
Get the most out of MongoDB using a problem-solution approach. This book starts with recipes on the MongoDB query language, including how to query various data structures stored within documents. These self-contained code examples allow you to solve your MongoDB problems without fuss. MongoDB Recipes describes how to use advanced querying in MongoDB, such as indexing and the aggregation framework. It demonstrates how to use the Compass function, a GUI client interacting with MongoDB, and how to apply data modeling to your MongoDB application. You’ll see recipes on the latest features of MongoDB 4 allowing you to manage data in an efficient manner using MongoDB. What You Will Learn Work with the MongoDB document model Design MongoDB schemas Use the MongoDB query language Harness the aggregation framework Create replica sets and sharding in MongoDB Who This Book Is ForDevelopers and professionals who work with MongoDB.
Practical Apache Spark
- 296pages
- 11 heures de lecture
Work with Apache Spark using Scala to deploy and set up single-node, multi-node, and high-availability clusters. This book discusses various components of Spark such as Spark Core, DataFrames, Datasets and SQL, Spark Streaming, Spark MLib, and R on Spark with the help of practical code snippets for each topic. Practical Apache Spark also covers the integration of Apache Spark with Kafka with examples. You’ll follow a learn-to-do-by-yourself approach to learning – learn the concepts, practice the code snippets in Scala, and complete the assignments given to get an overall exposure. On completion, you’ll have knowledge of the functional programming aspects of Scala, and hands-on expertise in various Spark components. You’ll also become familiar with machine learning algorithms with real-time usage. What You Will Learn Discover the functional programming features of Scala Understand the complete architecture of Spark and its components Integrate Apache Spark with Hive and Kafka Use Spark SQL, DataFrames, and Datasets to process data using traditional SQL queries Work with different machine learning concepts and libraries using Spark's MLlib packages Who This Book Is For Developers and professionals who deal with batch and stream data processing.