Most optical flow algorithms assume pairs of images that are acquired with an ideal, short exposure time. We present two approaches, that use additional images of a scene to estimate highly accurate, dense correspondence fields. In our first approach we consider video sequences that are acquired with alternating exposure times so that a short-exposure image is followed by a long-exposure image that exhibits motion-blur. With the help of the two enframing short-exposure images, we can decipher not only the motion information encoded in the long-exposure image, but also estimate occlusion timings, which are a basis for artifact-free frame interpolation. In our second approach we consider the data modality of multi-view video sequences, as it commonly occurs, e. g., in stereoscopic video. As several images capture nearly the same data of a scene, this redundancy can be used to establish more robust and consistent correspondence fields than the consideration of two images permits.
Anita Sellent Livres
