This two-volume set presents combinatorial functional equations using an algebraic approach, and illustrates their applications in combinatorial maps, graphs, networks, etc. The first volume mainly presents basic concepts and the theoretical background. Differential (ordinary and partial) equations and relevant topics are discussed in detail.
Yanpei Liu Ordre des livres



- 2019
- 2017
Algebraic elements of graphs
- 422pages
- 15 heures de lecture
This book studies algebraic representations of graphs in order to investigate combinatorial structures via local symmetries. Topological, combinatorial and algebraic classifications are distinguished by invariants of polynomial type and algorithms are designed to determine all such classifications with complexity analysis. Being a summary of the author‘s original work on graph embeddings, this book is an essential reference for researchers in graph theory. Contents Abstract Graphs Abstract Maps Duality Orientability Orientable Maps Nonorientable Maps Isomorphisms of Maps Asymmetrization Asymmetrized Petal Bundles Asymmetrized Maps Maps within Symmetry Genus Polynomials Census with Partitions Equations with Partitions Upper Maps of a Graph Genera of a Graph Isogemial Graphs Surface Embeddability
- 2017
Topological theory of graphs
- 369pages
- 13 heures de lecture
This book introduces polyhedra as a tool for graph theory and discusses their properties and applications in solving the Gauss crossing problem. The discussion is extended to embeddings on manifolds, particularly to surfaces of genus zero and non-zero via the joint tree model, along with solution algorithms. Given its rigorous approach, this book would be of interest to researchers in graph theory and discrete mathematics.