Plus d’un million de livres à portée de main !
Bookbot

Mathias Rafler

    Gaussian loop- and Pólya processes
    • This thesis considers on the one hand the construction of point processes via conditional intensities, motivated by the partial Integration of the Campbell measure of a point process. Under certain assumptions on the intensity the existence of such a point process is shown. A fundamental example turns out to be the Pólya sum process, whose conditional intensity is a generalisation of the Pólya urn dynamics. A Cox process representation for that point process is shown. A further process considered is a Poisson process of Gaussian loops, which represents a noninteracting particle system derived from the discussion of indistinguishable particles. Both processes are used to define particle systems locally, for which thermodynamic limits are determined.

      Gaussian loop- and Pólya processes