Bookbot

Modeling Information Diffusion in Online Social Networks with Partial Differential Equations

Paramètres

Pages
160pages
Temps de lecture
6heures

En savoir plus sur le livre

Focusing on the intersection of mathematics and social media, this book introduces a dynamic modeling approach using partial differential equations to analyze information diffusion in online networks. It employs the Laplacian matrix to identify user communities, embedding them in Euclidean space for further analysis. The authors validate their models with Twitter data, exploring significant events like the Egyptian revolution and predicting influenza prevalence. This innovative method proposes a paradigm shift in understanding information flow, offering a foundation for future spatio-temporal modeling in the big-data era.

Achat du livre

Modeling Information Diffusion in Online Social Networks with Partial Differential Equations, Haiyan Wang, Feng Wang, Kuai Xu

Langue
Année de publication
2020
product-detail.submit-box.info.binding
(souple)
Nous vous informerons par e-mail dès que nous l’aurons retrouvé.

Modes de paiement

Personne n'a encore évalué .Évaluer